A Classification of Tracially Approximate Splitting Interval Algebras. III. Uniqueness Theorem and Isomorphism Theorem

نویسنده

  • Zhuang Niu
چکیده

Motivated by Huaxin Lin’s axiomatization of AH-algebras, the class of TASI-algebras is introduced as the class of unital C*-algebras which can be tracially approximated by splitting interval algebras—certain sub-C*-algebras of interval algebras. It is shown that the class of simple separable nuclear TASI-algebras satisfying the UCT is classified by the Elliott invariant. As a consequence, any such TASI-algebra is then isomorphic to an inductive limit of splitting interval algebras together with certain homogeneous C*-algebras—so it is an ASH-algebra. Résumé. Une classe de C*-algèbres qui généralisent la classe bien connue TAI de Lin est considérée—basées sur, au lieu de l’intervalle, ce qui pourrait s’appeler l’intervalle fendu (“splitting interval”), de sorte que l’on les appelle la classe TASI. On montre que la classe de C*-algèbres TASI qui sont simples, nucléaires, et à élément unité, qui vérifient le théorème à coefficients universels (UCT), peuvent se classifier d’après l’invariant d’Elliott.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Classification of Tracially Approximate Splitting Interval Algebras. II. Existence Theorem

Motivated by Huaxin Lin’s axiomatization of AH-algebras, the class of TASI-algebras is introduced as the class of unital C*-algebras which can be tracially approximated by splitting interval algebras—certain sub-C*-algebras of interval algebras. It is shown that the class of simple separable nuclear TASI-algebras satisfying the UCT is classified by the Elliott invariant. As a consequence, any s...

متن کامل

Morphisms of Simple Tracially Af Algebras

Let A, B be separable simple unital tracially AF C*-algebras. Assuming that A is exact and satisfies the Universal Coefficient Theorem (UCT) in KK-theory, we prove the existence, and uniqueness modulo approximately inner automorphisms, of nuclear ∗-homomorphisms from A to B with prescribed K-theory data. This implies the AF-embeddability of separable exact residually finite dimensional C*-algeb...

متن کامل

A Classification of Tracially Approximate Splitting Interval Algebras. I. The Building Blocks and the Limit Algebras

Motivated by Huaxin Lin’s axiomatization of AH-algebras, the class of TASI-algebras is introduced as the class of unital C*-algebras which can be tracially approximated by splitting interval algebras—certain sub-C*-algebras of interval algebras. It is shown that the class of simple separable nuclear TASI-algebras satisfying the UCT is classified by the Elliott invariant. As a consequence, any s...

متن کامل

The uniqueness theorem for inverse nodal problems with a chemical potential

In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.

متن کامل

Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras

In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015